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LETTER TO THE EDITOR 

Invariants in automata networks 

Eric Golest and GCrard Y Vichniac 
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA 

Received 17 June 1986 

Abstract. We give two extensions of Pomeau’s additive invariant for reversible cellular 
automata and networks. 

Introduced in the 1940s by McCulloch, Pitts, von Neumann and Ulam, automata 
networks have established themselves as unique tools for modelling computation, 
‘connectionist’ and adaptive systems, and the emergence of complexity and organisation 
from the iteration of simple operations between simple elements (for recent reviews, 
see Bienenstock et a1 (1986) and Denker (1986)). Automata networks are nets of 
interconnected elements. Each element i has an internal state xi (0 or 1) and interacts 
in discrete time steps with other elements j from some neighbourhood of i. In turn, 
it updates its own state according to an arbitrary preassigned ‘rule’, a Boolean function 
of the neighbourhood configurations at some past times: 

x; =L({xj-’}, {xj-*}, . . . , {xj-”). (1) 
As the present value x f  at site i depends on states from the previous k steps, the 

automaton defined by (1) is said to be of order k. The updatings in (1) are here 
understood to be synchronous: all the sites update their state simultaneously as a 
function of the non-updated values of the neighbours. 

In the important special case of cellular automata, the variables are located on a 
regular array with short-ranged connections (the neighbourhood of i involves a small 
set of sites j close to i), and the law of evolution is uniform (f in (1) is the same at 
all sites i). These restrictions make cellular automata particularly well suited for the 
modelling of homogeneous physical systems with short-ranged microscopic interactions 
(Farmer et a1 1984, Hayes 1984, Bennett et a1 1986). Moreover, these restrictions have 
been exploited to advantage for the construction of machines that simulate cellular 
automata efficiently and that are modularly expandable (Toff oli 1984, Hillis 1985, 
Toffoli and Margolus 1985, Jenkins and Lee 1986). Though keeping these applications 
in mind, we shall not make use of these restrictions in the present discussion-the nets 
may be irregular and the neighbourhoods may be arbitrary. 

This letter focuses on reversible automata, which are backward as well as forward 
deterministic: each configuration (or set of k successive configurations for systems of 
order k )  admits a unique predecessor; the state space of the automata have no merging 
orbits. Reversible automata are of obvious physical interest: they can support realistic 
thermodynamics and hydrodynamics (Hardy et a1 1976, Frisch et a1 1986, Margolus 
et a1 1986). 
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Fredkin (see Margolus 1984, Vichniac 1984) has devised a simple way of construct- 
ing reversible second-order rules. Take any first-order rule Ai and subtract (modulo 
2) from its value the state xi-' that the considered site assumed at time t -2: 

x f =  Ai({xf-'}) - xf-' (mod 2 ) .  (2) 
This defines a second-order rule which is explicitly invertible, since (2) can be solved 
exactly for xiW2, even if Ai itself is not invertible. Notice also that the Subtraction 
modulo 2 is simply the exclusive OR Boolean operation. 

A network with N sites will have N dynamical invariants, since the invertible 
evolution 'carries the memory' of the initial configuration. Of special interest are those 
invariants which are additive, i.e. which can be written as a sum over all sites i, in 
analogy with the additive canonical invariants of mechanics. 

In an earlier letter, Pomeau (1984) constructs such an invariant for Ai of the form 

Ai = S Ji,jxlf-', qi 
( i , j  1 (3) 

where the Kronecker S is 1 if its two arguments are equal and 0 otherwise, and where 
the weights Ji, j  are assumed to be symmetric in i and j. In other words 

Pomeau's invariant is defined as 

@'=(XI, Jx'-')-(q, xt-xf- ' )  ( 5 )  
where x is the vector of components xi, J is the matrix of elements JiVj ,  and where the 
inner product notation implies a sum over all sites ((U, U) = Z i  up i ) .  

Remarkably enough, Pomeau's invariant ( 5 )  takes precisely the form of a dissipative 
'energy' which was introduced in the study of the length of transients and limit cycles 
in standard irreversible $Erst-order neural networks (Goles 1983, see also Goles et al 
1983, 1985). 

In terms of spins si = 2xi - 1 (such that si = *l), the invariant takes the familiar 
form of an Ising energy 

with local external fields hi = $ Zj  Ji,j - qi ,  except that it involves spin values taken at 
two successive times. The invariant takes its simplest form 

(7) 
i,j 

for the 'Q2R cellular automaton (Vichniac 1984, 1986) defined by (4) with qi = 2 at 
all sites of a two-dimensional square lattice with bonds Ji,j = 1 for i, j nearest neighbours, 
and vanishing otherwise. (In a D-dimensional lattice, one should use qi = D.) In these 
simple cases we have two non-interacting Ising-type systems. If one of these systems 
is used to encode the immediate past of the other, Q2R provides an extremely efficient 
microcanonical algorithm for parallel simulations of the Ising model provided one 
replaces t - 2 by t - 1 in (4) and updates the lattice in a checkerboard pattern (Herrmann 
1986). Q2R is capable of ergodicity breaking and also (Sorkin 1986) of an exceptionally 
large amount of ultrametricity, two important properties that characterise spin glasses. 
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Pomeau proposed the problem of extending ( 5 )  to the more general case where Ai 
admits several ‘peaks’: 

If all the weights Ji,j at a given i are equal, then Ai is a symmetric Boolean function, 
i.e. a function that is invariant under permutations of its arguments. First-order cellular 
automata based on such ‘counting’ functions are known to be capable of very complex 
behaviour (Toffoli 1977, Wolfram 1984, Vichniac 1984). The problem of constructing 
additive invariants for second-order automata with general counting Ai is thus expected 
to be very difficult. In this letter, we solve this problem in a special case and we 
construct invariants for a class of automata of higher order. 

In the case where all the peaks in (8) belong to the same congruence class (mod p) 
for some integer p: 

qjl’ = ,  , . = qjs’ = Qi (9) 

@‘=(Xr,JX‘- l ) - (Q,X‘+X‘- l )  (10) 

(mod P) 
the quantity 

is an invariant of the evolution. All the operations in this definition are understood 
modulo p ,  including the summation implicit in the inner product. The invariance of 
@‘ can be seen by calculating the difference 

) (11) @ ‘ - @ ‘ - 1 =  (Jx‘-I - Q, x‘ -x’-2 

where again we assume that J is symmetric. The inner product vanishes term by term 
because at a site i either 

N 

Ji,jx;-’ = Qi (mod P) 
j = 1  

or, when Ai = 0, xi assumes the value xi-’. The p values of @ thus provide an invariant 
classification of the orbits. This classification is admittedly crude if p is small. However, 
the conserved quantity is of conspicuous physical interest because it is additive: it 
takes the form of a sum over sites of a ‘local energy’, and one can observe and study 
flows of @, especially if the coupling Ji,j are short-ranged, as in cellular automata. 

Our second extension of Pomeau’s invariant deals with the single-peak case (3), 
but where the Fredkin construction (2) is extended to systems with k steps of memory: 

1 - xl-k i f A i = l  
x f - k  i fAi=O 

x; = 

where Ai has a memory of order k - 1: 

k-1  
if = qi 

s=l j 

otherwise. 

Rules of this type have been introduced by Caianiello in order to include hysteresis 
behaviour in the modelling of neural activity (Caianiello 1966). This transition rule, 
which defines the new value xl of a site as a function of the past occupancies of its 
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neighbourhood, now involves k - 1 matrices J ( ' ) .  We require that these matrices obey 
a 'palindrome condition': 

~ = l , .  . . , k-1 (15) j ( k - s )  = ~ C S )  

where j c s )  is the transpose of J"). The corresponding invariant now takes the form 

The invariance of Q' is also obtained here by constructing the difference: 

(17) 

The condition J'k-'' = yields 

Here again, the inner product vanishes term by term because, according to the evolution 
law (13) and (14), either 

or 
x: 

The invariance of @ is thus established. 

This work was supported in parts by grants from DARPA (N0014-83-K-0125), NSF 
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